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Under suitable assumptions, a functional central limit theorem is obtained for a
three-dimensional model of Maxwellian molecules. This model is related to a
nonlinear Boltzmann-type equation. It will be proved that the family of the dis-
tributions induced by fluctuation processes converges weakly.
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1. INTRODUCTION

The study of large systems of interacting particles leads to nonlinear
evolution equations. Maxwell and Boltzmann considered a diluted envi-
ronment consisting of a large number n of balls with radius 1

`n
. Thus, they

obtained a (R6)n-valued Markov process in which only the initial positions
and velocities are random. Unfortunately, the infinitesimal generator
cannot be expressed properly. To get around such a problem, one of the
modifications one can make is to substitute infinitesimal points for small
balls; but in this case we must consider collisions between those points.
Bezandry et al. (1) studied the modified Maxwell case. Indeed, they proved a
result to the convergence in law of empirical processes associated with
general interacting kernels.

This work is concerned with the fluctuation problem for the following
three-dimensional model (see, e.g., ref. 2) which is fairly close to a realistic



model known as Maxwellian molecules in interaction associated with the
nonlinear equation of type,

d
dt

OlN
t , fP=OlN

t , CNfP+OlN
t é lN

t , L1fP, with lN
0 =m (1)

where, N > 0, is a fixed parameter, lN
t and m are probability measures on

R3 × R3, and the brackets O . , .P are used to represent the integrals. The
operator CN and L1 are defined as follows,

CNf(x, v)=N 5f 1x+
v
N

, v2− f(x, v)6 (2)

L1f(x, v; xŒ, vŒ)=
1

8p
F

S2
[esf(x, v; xŒ, vŒ))] ds (3)

where,

esf(x, v; xŒ, vŒ)=f(x, ṽ(s)) − f(x, v)+f(xŒ, ṽ Œ(s)) − f(xŒ, vŒ)

and

ṽ(s)=v − s(v − vŒ) s, ṽ Œ(s)=vŒ+s(v − vŒ) s

In the definition of L1, ds denotes normalized surface measure on the
unit sphere S2. The function f is taken smooth enough in such a way that
CN is well-defined and that the integrals make sense. It is important to note
that Eq. (1) is an asymptotic version of the following nonlinear equation,

d
dt

Olt, fP=Olt, CfP+Olt é lt, L1fP (4)

where, Cf(x, v)=v.Nxf(x, v).
This work actually represents an intermediate step for the study of the

fluctuation problem associated to Eq. (4). The spatially homogeneous case
(i.e., position neglected) is well-known and has been studied by Uchiyama
in ref. 3 and also Ferland et al. (4) To get the fluctuation convergence, we
shall follow their approach. We shall first prove the tightness of the fluc-
tuation processes, then that any limiting law solves any associated martin-
gale problem, and finally a uniqueness of a solution of the martingale
problem.
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2. MODEL AND NOTATION

2.1. Notation

Consider a sequence {Wn, N(t), t ¥ [0, T]}n \ 2 of Markov processes
associated to Eq. (1). The nth process takes its values in (R3 × R3)n. Indeed,
we have, Wn, N(t)=(Wn, N

1 ,..., Wn, N
n (t)) with, Wn, N

j (t)=(Xn, N
j (t), Vn

j (t)).
The vector Xn, N

j (t) is the position component of Wn, N
j (t) and Vn

j (t) is
its velocity component. The nth process is governed by the following
generator:

GN
n f(w1,..., wn)=LN

n f(w1,..., wn)+Hn f(w1,..., wn) (5)

with

LN
n f(w1,..., wn)=N C

n

j=1
CNjf(w1,..., wn),

Hn f(w1,..., wn)=
1
n

C
i ] j

L ijf(w1,..., wn)

The operators CNj and L ij are analogous to CN and L1, that is,

CNjf(w1,..., wn)=f 1w1,..., 1xj+
vj

N
, vj

2 ,..., wn
2− f(w1,..., wn)

L ijf(w1,..., wn)=
1

4p
F

S2
[f i, j, s(w1,..., wn) − f(w1,..., wn)] ds

The function f i, j, s is obtained from f by replacing the variables wi=
(xi, vi) and wj=(xj, vj) by w̃i=(x, ṽ(s)) and w̃j=(xj, ṽ Œ(s)) respectively.

2.2. Model

Let us describe the model studied in this work. If we denote by
wn, N=(wn, N

1 ,..., wn, N
n ), with wn, N

i =(xn, N
i , vi), the initial state vector, then

the evolution scheme is the following:

(a) The vector wn, N remains unchanged for a random time y which is
exponentially distributed with parameter Nn+(n − 1).

(b) At the end of this random time, a jump may occur. It occurs in
the component positions with probability nN

nN+(n − 1) . In this case, the change
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is the following: a component j is chosen uniformly among the n possibili-
ties and the vector xn, N

j is replaced by xn, N
j +vj

N . If the jump occurs in the
component velocities, a couple (i, j) is chosen uniformly and velocities
(vi, vj) are replaced by a random vector (v2i, ṽj) whose distribution is given
by a transition probability defined by

Q(vi, vj : B)=
1

4p
F

S2
IB(ṽi(s), v2j(s)) ds (6)

where IB is the characteristic function of B ¥ B(R6) and ṽi, v2j, and ds are as
stated in Section 1.

(c) The previous steps repeat indefinitely (with the new vector and
independent exponential times).

We consider a system of Markov processes {Wn, N(t), t ¥ [0, T]} and
suppose that they are all defined on a common probability space (W,A, P)
and that their paths are right continuous with left-hand limit (cadlag).
The empirical distribution at time t: mn, N

t =1
n ;n

j=1 dWn, N
j (t) of Wn, N(t) and

{mn, N
t , t ¥ [0, T]} is called the empirical process associated with {Wn, N(t),

t ¥ [0, T]}. In the previous work, (1) we established the following theorem
for general kernels.

Theorem 2.2.1. Let m a probability measure on R3 × R3 and assume
that,

(a) There exists a contant L > 0 such that,

F
R3 × R3

||ṽ − v|| Q(v, vŒ, dṽ, dv2Œ) [ L(1+||v||+||vŒ||)

for any v and vŒ in R3.

(b) supn E[1
n ;n

j=1 ||Wn, N
j (0)||] < ..

(c) mn, N
0 converges in distribution to m.

Then the empirical processes {mn, N
t , ¥ [0, T]} converge in distribution to a

deterministic process {lN
t , t ¥ [0, T]} which is the unique solution of (1).

The scaled fluctuation of mn, N
t about lN

t is given by,

gn, N
t =`n [mn, N

t − lN
t ]

The process {gn, N
t , t \ 0} is a measure-valued temporally inhomogeneous

Markov process. We name it the (n-particles) fluctuation process.
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3. FLUCTUATIONS PROCESSES

A priori, the fluctuation gn, N
t takes values in the space of signed mea-

sures, but the limiting process(if it exists) is no longer signed-measure; it is
an H−4(R6)-process as shown in the following lemma:

Lemma 3.1. Under hypotheses (a) and (b) of Theorem 2.2.1
together with the notation above, we have:

(a) -t \ 0 and OlN
t , ||x||P < .

(b) -n \ 2, gn, N is a process taking its values in the Sobolev space
H−4(R6).

Let us introduce Sobolev spaces, which are distribution spaces and
Hilbert spaces. They play an important role in partial differential equations
and in variational calculus. As shown in Lemma 3.1, the Sobolev space
H4(R6) (or its dual H−4(R6)) will be used in this paper, because it is the
most appropriated to the present situation.

The Sobolev space of order m is defined as, Hm(Rn)={u ¥ L2(Rn) :
(-a ¥ Nn, |a| [ m) “

au ¥ L2(Rn)}. It is well-known the Sobolev space
Hm(Rn), is a Hilbert space equipped with the following inner product,
Ou, vPm=; |a| [ m >Rn “

au “
av dx. Now let us prove Lemma 3.1 assuming

m=4 and n=6 and then considering the Hilbert space H4(R6). We shall
denote its norm as || . ||4(respectively || . ||−4 the norm of H−4(R6)).

Proof. Part (a) of this lemma is straightforward. It follows immedi-
ately from Lemma 2.2 (see, e.g., ref. 1). To establish part (b), we fix
w, n, N, and t; and consider a function f ¥ H4(R6). Then, we have to
evaluate the quantity |Ogn, N

t (w), fP|. We have the following,

|Ogn, N
t , fP| [ `n 5F

R6
|f(x) − f(0)| mn, N

t (dx)+F
R6

|f(x) − f(0)| lN
t (dx)6

Let us approximate |f(x) − f(0)|. By ref. 5, Lemma 6.95, p. 216, we have,
|f(x) − f(0)| [ C ||f||4 ||x||a. Assume a=1

2 , hence,

|Ogn, N
t , fP| [ C `n 5F

R6
`||x|| mn, N

t (dx)+F
R6

`||x|| lN
t (dx)6 ||f||4

|Ogn, N
t , fP| [ C `n 51

n
1 C

n

j=1
||Wn, N

j (t)||2
1
2

+(OlN
t , ||x||P)

1
26 ||f||4

Since OlN
t , ||x||P is finite by part (a) of the lemma, we conclude that,

gn, N
t (w) ¥ H−4(R6). Moreover, Ogn, N

t , fP is a real random variable for all
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f ¥ H4(R6). Since H4(R6) generates the Borel s-field of H−4(R6), this is
enough to get the conclusion.

The following two lemmas play an important role throughout this
paper. For any given probability measure m on R6, we define an integral
operator on H4(R6) as follows: L(m): H4(R6) Q H4(R6), such that,

L(m) f(x, v)=F
R6

m(dxŒ, dvŒ) F
S2

esf(x, v; xŒ, vŒ)
ds

4p

where es is given by Eq. (3).

Lemma A. The operator defined above, L(m) is continuous, that is,
there exists C > 0 such that, ||L(m) f||4 [ C ||f||4, -f ¥ H4(R6).

Proof. It is not hard to see that when f ¥ H4(R6). The function L(m) f

belongs to H4(R6). Indeed this fact is given by the fact that m is a probability
measure. Now, we have, ||L(m) f||4 [ >R6 >S2 ||esf(., .; xŒ, vŒ)||2

4
ds
4p m(dxŒ, dvŒ).

To complete the proof, we just have to show that, there exists a constant
C > 0, independent of x and v such that, ||esf(. , . ; xŒ, vŒ)||2

4 [ C ||f||2
4.

Indeed, to find ||esf(. , . ; xŒ, vŒ)||2
4, we have to find all derivatives of order

less than or equal 4 of esf considered as a function of only x and v.
N(x, v)e

sf(x, v; xŒ, vŒ)=(Nxesf(x, v; xŒ, vŒ), Nve
sf(x, v; xŒ, vŒ)). Such an oper-

ator contains all first derivatives of f. Therefore using Cauchy–Schwarz
inequality and considering the square on both side, it turns out that, there
exists a constant C1 > 0, such that, ||Nesf||2 [ C1 ||Nf||2. The second deriva-
tives of esf are given by the matrix operators,

D2
(x, v)e

sf(x, v; xŒ, vŒ)=RD2
xxesf D2

xve
sf

D2
vxesf D2

vve
sf
S .

The derivative operators: D2
xxesf, D2

xve
sf, D2

vxesf, D2
vve

sf contain all
derivatives of f. Using again Cauchy–Schwarz inequality and considering
the square on both side, it follows that there exists a constant C2 > 0, such
that, ||D2

(x, v)esf||2 [ C2 ||D2
(x, v)f||2.

Using a similar reasoning, it can be shown that there exists C > 0 such
that:

C
|a| [ 4

||Da
(x, v)e

sf||2 [ C C
|a| [ 4

||Da
(x, v)f||2 (7)

thus,

F
R3

F
R3

C
|a| [ 4

||Da
(x, v)e

sf||2 dx dv [ C F
R3

F
R3

C
|a| [ 4

||Da
(x, v)f||2 dx dv (8)
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which means that,

||esf(. , . ; xŒ, vŒ)||4 [ C ||f||4. (9)

Lemma B. Let f ¥ H4(R6) and consider the operator L1f given as
in Eq. (3). Let us consider partial mappings given as,

C1(f): (x, v) Q L1f(x, v; xŒ, vŒ) and C2(f): (xŒ, vŒ) Q L1f(x, v; xŒ, vŒ)

Then the followings hold,

1. For xŒ, vŒ fixed, C1(f)(x, v) ¥ H4(R6),

2. For x, v fixed, C2(f)(xŒ, vŒ) ¥ H4(R6),

3. Lf ¥ H4(R6) é H4(R6).

Proof. In this proof, we use relations Eq. (8) and Eq. (9) defined in
the proof of Lemma A and the following formula,

F
Sn − 1

f(s) ds=F
Rn

ID f 1 x
||x||

2 dx (10)

where D={x ¥ Rn : 0 < ||x|| [ 1}. Now let us consider such a formula for
n=3. Since (x, v) and (xŒ, vŒ) play symmetric roles, we have just to show
(1) or (2). Let us prove (1) for instance. By using (10) it follows that,

C1(f)(x, v)=
1

8p
F

D

e
y

||y||(x, v; xŒ, vŒ) dx dv

Using (9), we get, ||C1(f)||4 [ C
8p >D ||f||4 dy. Thus,

||C1(f)||4 [
C
8p

Mes(D) ||f||4(R6)

The assertion (3) is given by the fact that the following mapping is an iso-
morphim, H4(R6) é H4(R6) Q H4(R12), f é g Q (f, g), and the fact that
H4(R12) — H4(R6) × H4(R6).

In the rest of this section we will derive a form of the infinitesimal
generator of gn, N and its formal limit as n Q+.. For f ¥ H4(R6),
g ¥ C.

0 (R) (a C.-function vanishing off a compact set) and g a signed
measure of the form:

g — `n (a − lt), a=
1
n

C
n

k=1
dwk

, where (w1, w2,..., wn) ¥ R6n (11)
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we set,

Cn, N
t (g, f, g)=lim

h 0 0

1
h

[E[g(Ogn, N
t+h , fP) | gn, N

t =g] − g(Og, fP)] (12)

(This is regarded as the infinitesimal generator for Markov process gn, N

operating on the function, g Q g(Og, fP)). If g i, j, w denote a signed measure
obtained from g by replacing wi, wj by w̃(s), w̃Œ(s) in Eq. (11), then
Cn, N

t (g; f, g) is expressed as:

Cn, N
t (g; f; g)=

1
4pn

C
i < j

F
S2

[g(Og i, j, s, N, fP) − g(Og, fP)] ds

− `n
d
dt

OlN
t , fP g −(Og, fP)

Then, by observing, nOa é̇ a, L1fP=O(g+`n lt)2 é , L1fP; we can easily
deduce that,

Cn
t (g, f, g)=An, N

t (f) g −(Og, fP)+1
2 Qn, N

t (f) g'(Og, fP)+Rn (13)

where

An, N
t (f)=Og, CN

1 fP+
1

`n
Og é g, L1fP+Og é lN

t , L1fP (14)

Qn, N
t (f)=

1
2
Oa, CN

2 fP+
1
2
Oa é a, L2fP (15)

with

|Rn | [
||g −−−||.
12 `n

(|Oa, CN
3 fP|+|Oa é̇ a, |L3f|P|)

In the above formulas, we have:

a é̇ a=
1
n2 C

i ] j
dwi

é dwj
, CN

k f(x, v)=N 5f 1x+
1
N

v, v2−f(x, v)6
k

Lkf(x, v; xŒ, vŒ)=
1

8p
F

S2
[f(x, ṽ(s))−f(x, v)+f(xŒ, ṽ Œ(s))−f(xŒ, vŒ)]k ds

If we set QN
t (f)=1

2 (OlN
t , CN

2 fP+OlN
t é lN

t , L2fP), and let n Q . in Eq. (13),
we get a formal limit of Cn, N

t : (Og, CN
1 fP+Og é lN

t , L1fP) g−(Og, fP)+
1
2 QN

t (f) g'(Og, fP), which should regulate the limiting process.
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4. PRELIMINARY RESULTS

Let us introduce two additional conditions for {Wn, N(0), n \ 2}:

(H0) sup
n

E 51
n

C
n

j=1
||Wn, N

j (0)||26 < . (16)

(H1) sup
n

E[||gn, N
0 ||2

−4] < . (17)

The next proposition, which plays a crucial role in the whole story of this
paper, asserts that the finiteness of (H1) propagates.

Proposition 4.1. If H0 and (H1) hold, there exists a non-decreasing
function Kt such that for all t \ 0:

sup
n

E[||gn, N
t ||2

−4] [ Kt

In order to prove this proposition, we need to introduce some ancillary
quantities. Define for any f ¥ H4(R6),

Mn, N
t — Mn, N

t (f)=Ogn, N
t , fP− F

t

0
An, N

s (f) ds (18)

Sn, N
t =Sn, N

t (f)=Mn, N
t (f)2 − F

t

0
Qn, N

s (f) ds (19)

where An, N
s (f) and Qn, N

s (f) are defined by Eq. (14) and Eq. (15) respec-
tively. Then Mn, N

t and Sn, N
t are martingales for the filtration Fn, N

t =
s(mn, N

t : 0 [ s [ t). We know that the space H4(R6) is separable and that a
complete orthogonal set (fk)k \ 1 can be found in H4(R6), its Hilbert basis
for instance. We will use this basis to express the dual norm of the fluctua-
tion. For any fk, we have:

E[(Ogn, N
t , fkP)2]

[ 2E[Mn, N
t (fk)2]+2E 51F

t

0
An, N

t (fk) ds2
26

=2E[Sn, N
t (fk)]+2E 5F

t

0
Qn, N

s (fk) ds6+2E 51F
t

0
An, N

s (fk) ds2
26

[ 2E[Sn, N
t (fk)]+2 F

t

0
E[Qn, N

s (fk)] ds+2t F
t

0
E[An, N

t (fk)2] ds
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Since (Sn, N
t (fk))k \ 1 is a martingale, we also have,

E[Sn, N
t (fk)]=E[Sn, N

0 (fk)]=E[|Ogn, N
0 , fkP|2]

Considering the sum over k, it follows that E[||gn, N
t ||2

−4] is bounded by:

2E[||gn, N
0 ||2

−4]+2 F
t

0
C

k \ 1
E[Qn, N

s (fk)] ds+2t F
t

0
C

k \ 1
E[An, N

s (fk)2] ds

Upper-bounds for the two terms are given in the following lemma:

Lemma 4.1. For all t \ 0, we have the following inequalities,

(a) ; k \ 1 E[Qn, N
t (fk)] [ CE[1

n ;n
j=1 ||Vn

j (0)||2]
1
2

(b) ; k \ 1 E[An, N
t (fk)2] [ CE[||gn, N

t ||2
−4].

Proof. (a) When x, v, xŒ, vŒ, and s are fixed, using ref. 5,
Lemma 6.95, p. 216, we can show that esf(x, v; xŒ, vŒ) is a continuous linear
functional on H4(R6) and the square of its norm in H−4(R6) is bounded by
C(||v||+||vŒ||). Parseval’s identity gives,

C
k \ 1

|esfk(x, v, xŒ, vŒ)|2 [ C(||v||+||vŒ||)

and therefore the following inequality holds:

C
k \ 1

L2fk(x, v; xŒ, vŒ)=
1

4p
F

S2
C

k \ 1
|esfk(x, v; xŒ, vŒ)|2 ds [ C(||v||+||vŒ||)

Similarly, we can show that: ; k \ 1 CN
2 fk(x, v) [ C ||v||. On the other hand,

Qn, N
t (f)=1

2 [Omn, N
t , CN

2 fP+Omn, N
t é mn, N

t , L2fP]

Then we can write:

C
k \ 1

E[Qn, N
t (fk)]

[
1
2
1E 5Omn, N

t é mn.N
t , C

k \ 1
L2fkP6+E 57mn, N

t , C
k \ 1

C2f862

[
1

2n2 C
n

i, j=1
E 5 C

k \ 1
L2fk(Xn, N

i (t), Vn
i (t), Xn, N

j (t), Vn
j (t))6

+
1
2n

C
n

i=1
E 5 C

k \ 1
CN

2 f(Xn, N
i (t), Vn

i (t))6
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[
C
n2 C

n

i, j=1
E[||Vn

i (t)||+||Vn
j (t)||]+

C
n

C
n

i=1
E[||Vn

i (t)||]

[ CE 51
n

C
n

j=1
||Vn

j (t)||6

[ CE 51
n

C
n

j=1
||Vn

j (t)||26
1
2

=CE 51
n

C
n

j=1
||Vn

j (0)||26
1
2

The last equality follows from preservation of energy.

(b) From the definition of An, N
t (f), it follows that:

An, N
t (f)2 [ C(|Ogn, N

t é lN
t , L1fP|2+

1
n

|Ogn, N
t é gn, N

t , L1fP|2

+|Ogn, N
t , CN

1 fP|2)

We then have to bound each term properly, that is:

|Ogn, N
t é lN

t , L1fP|=|Ogn, N
t , L(lN

t ) fP|

[ ||gn, N
t ||H − 4 ||L(lN

t ) f||4 [ C ||gn, N
t ||−4 ||f||4

Consequently,

C
k \ 1

|Ogn, N
t é lN

t , L1fkP|2 [ C ||gn, N
t ||2

−4

Since the series is just the square of the norm in H−4(R6) of the random
functional. By the same token, ; k \ 1 Ogn, N

t é gn, N
t , L1fkP

2 [ Cn ||gn, N
t ||2

−4

and ; k \ 1 Ogn, N
t , CN

1 fkP
2 [ C ||gn, N

t ||2
−4. Combining these inequalities, we

get:

C
k \ 1

E[An, N
t (fk)2] [ CE[||gn, N

t ||2
−4]

We now prove that the finiteness of (H1) propagates. Set yn, N(t)=
E[||gn, N

t ||2
−4]. Using Lemma 4.1 , it follows that:

yn, N(t) [ 2yn, N(0)+CtE 51
n

C
n

j=1
||Vn

j (0)||26
1
2

+Ct F
t

0
yn, N(s) ds
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By Gronwall’s Lemma we have,

yn, N(t) [ 12yn, N(0)+CtE 51
n

C
n

j=1
||Vn

j (0)||26
1
22 exp(Ct2)

which proves the Proposition.

Proposition 4.2. The following holds,

sup
n

E[ sup
0 [ t [ T

||gn.N
t ||2

−4] < .

Proof. A martingale inequality gives,

E[ sup
0 [ t [ T

Mn, N
t (f)2] [ 4E[Mn, N

T (f)2]

Therefore, we can write the following:

E[ sup
0 [ t [ T

Ogn, N
t , fkP

2] [ 2E[ sup
0 [ t [ T

Mn, N
t (fk)2]+2E 51F

T

0
An, N

s (fk) ds2
26

[ 16E[Ogn, N
T , fkP

2]+18T F
T

0
E[An, N

s (fk)2] ds

We then have:

sup
n

C
k \ 1

E[ sup
0 [ t [ T

< gn, N
t , fk > 2]

[ 16 sup
n

E[||gn, N
t ||2

−4]+18T F
T

0
sup

n
E 5 C

k \ 1
An, N

s (fk)26 ds

The first term is definite by Proposition 4.1, the second is also finite
because the integrand is bounded on [0, T] according Lemma 4.1 and
Proposition 4.1.

5. COMPACTNESS OF THE FLUCTUATION PROCESSES

In this section, we discuss the relative compactness of the fluctuation
processes gn, N

. . We shall consider them as H−4(R6)-valued processes and
look at them on a fixed compact interval [0, T]. We then establish the
following theorem:
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Theorem 5.1. Under our intial assumptions, the laws {L(gn, N
. ),

n \ 2} of the fluctuation processes are relatively compact for the weak
convergence on D([0, T], H−4(R6)) and any limit law has its support in
C([0, T]; H−4(R6)).

Proof. The space H−4(R6) endowed with its weak topology is a
Lusin space. Moreover, the space D([0, T]; H−4(R6))(with the associated
Skorohod topology) is also a Lusin space (ref. 6, Theorem 3.2.1). To
show the relative compactness of the laws of the fluctuation processes
{gn, N

. , n \ 2}, it is enough to verify the following two conditions

(a) There exists a sequence (Km)m \ 1 of weakly compact subsets of
H−4(R6) such that,

-m \ 1, -n \ 2, P{,t ¥ [0, T] : gn, N
t ¨ Km} [ 2−m

(b) For all f ¥ H4(R6), the real processes {Ogn, N
. , fP, n \ 2} are rela-

tively compact.

We begin with property (a). We have to let,

M=sup
n

E[ sup
0 [ t [ T

||gn, N
t ||2

−4] < .

and to apply Chebychev’s inequality to the sets:

Km={g ¥ H−4(R6) : ||g||2
−4 [ M2m}, m \ 1

It remains to verify property (b). To establish this property we will use the
following lemma, which will be proven under our initial assumptions.

Lemma 5.1. (a) For any f ¥ H4(R6)

lim
M 0 .

sup
n

P{ sup
0 [ t [ T

|Ogn, N
t , fP| > M}=0 (20)

(b) For any e > 0 and f ¥ H4(R6), there exists d > 0 and any integer
N0 \ 2 such that,

sup
n \ N0

P{ sup
s, t ¥ [0, T], |t − s| < d

|Ogn, N
t , fP−Ogn, N

s , fP| \ e} [ e (21)

Proof. Property (20) is an easy consequence of Proposition 4.2. In
order to verify (21), we first introduce some notation and other tools which
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we will use in the sequel. For each function f ¥ D([0, T]; R) and d > 0 we
set, as in Billingsley, (7)

Wœ(f, d)=sup{|f(t) − f(r)| N |f(r) − f(s)|; 0 [ s [ t [ T, t − s < d}

we then have: (8)

sup
s, t ¥ [0, t], |t − s| < d

|f(t) − f(s)| [ 2Wœ(f, d)+ sup
0 [ t [ T

|f(t) − f(t−)| (22)

We also denote

yn, N
R —=yn, N

R (f)=inf{t \ 0 : |An, N
t (f)| > R} and Yn, N

t =Ogt N y
n, N
R

, fP

Hence,

lim
R Q .

sup
n

P{yn, N
R [ T}=0 (23)

since for f ¥ H4(R6)

sup
n

E[ sup
0 [ t [ T

|An, N
t (f)|] < . (24)

Indeed, the proof of Lemma 3.1, we noted that,

|Ogn, N
t é lN

t , L1fP| [ C ||gn, N
t ||−4 ||f||4 (25)

|Ogn, N
t é gn, N

t , L1fP| [ C `n ||gn, N
t ||−4 ||f||4 (26)

and

|Ogn, N
t , CN

1 fP| [ C ||gn, N
t ||−4 ||f||4 (27)

Since |An, N
t (f)| is bounded by

|Ogn, N
t é ln, N

t , L1fP|+
1

`n
|Ogn, N

t é gn, N
t , L1fP|+|Ogn, N

t , CN
1 fP| (28)

the result Eq. (24) follows from Proposition 4.2. Furthermore, since yn, N
R is

a stopping time, the processes,

Mn, N
t =Yn, N

t − F
t N y

n, N
R

0
An, N

s (f) ds

Sn, N
t =(Mn, N

t )2 − F
t N y

n, N
R

0
Qn, N

s (f) ds
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are martingales; hence it is easy to show (see ref. 9) that,

sup
n

E[(Yn, N
t − Yn, N

r )2 (Yn, N
r − Yn, N

s )2] [ const.(t − s)2

for 0 [ s [ r [ t [ T. This implies (see ref. 7, Theorem 15.6) that,

lim
d a 0

sup
n \ N0

P 3Wœ(Yn, N
., d ) >

e

4
4=0 (29)

Let us fix e > 0 and f ¥ H4(R6) and afterward choose an integer N0 large
enough that when n \ N0,

4

`n
||f||. [

e

2

Since the probability that more than two components of Wn, N(t) change at
the same time is zero, we have

P 3 sup
0 [ t [ T

|Ogn, N
t , fP−Ogn, N

t − , fP| [
4

`n
||f||. 4=1

which implies that,

P 3 sup
0 [ t [ T

|Ogn, N
t , fP−Ogn, N

t − , fP| [
e

2
4=1

On the other hand, because of Eq. (23) and Eq. (29) it follows that,

lim
d a 0

sup
n \ N0

P 3Wœ(Ogn, N
. , fP, d) >

e

4
4=0

Hence, by inequality Eq. (22), we get:

lim
d a 0

sup
n \ N0

P{ sup
s, t ¥ [0, T], |t − s| < d

|Ogn, N
t , fP−Ogn, N

s , fP| \ e}=0

This is precisely Eq. (21), so that the proof of Theorem 5.1 is complete.

6. MARTINGALE PROBLEM

In this section, we will denote by Pn, N the law of the process gn, N
.

and En, N its expectation. If E is a topological space, its borel s-algebra
is denoted by B(E). We denote by Nt the canonical projection of
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D([0, T]; H−4(R6)) into H−4(R6) defined by: Nt(w)=w(t); the s-algebra
generated by {Ns; 0 [ s [ t} will be noted by Ft . Adding to our initial
assumptions the hypothesis that {gn, N

0 , n \ 2} converges to gN
0 weakly in

H−4(R6), we prove that the sequence {gn, N
. , n \ 2} on D([0, T]; H−4(R6)))

has a unique limit point; hence, this sequence converges. To do so, we will
first show that, for each limit point, some expressions are martingales. This
property will then be used to obtain the uniqueness by the means of an
iteration technique.

Let f ¥ H4(R6) and g ¥ C3
b(R) and define a stochastic process, (Hg, f

t )
as follows:

Hg, f
t =g(ONt, fP) − F

t

0
{AN

s (Ns, f) g −(ONs, fP)} ds

− 1
2 F

t

0
{QN

t (f) g'(ONs, fP)} ds

where AN
s (Ns, f)=ONs, CN

1 fP+ONs é lN
s , L1fP and the expression QN

s (f)
is defined by Eq. (15).

Note that the random variables Hg, f
t form a Ft -adapted process and

that Hg, f
t is integrable with respect to PN, where PN is a limit point of Pn, N.

The latter can be easily proven using the following proposition.

Proposition 6.1. Under our initial assumptions, we have that,

sup
0 [ t [ T

EN[||Nt ||
2
−4] < .

(Here EN denotes the integration with respect to PN.)

Proof of Proposition 6.1. Since PN is a limit point of Pn, N, we have:

EN[||Nt ||
2
−4] [ sup

n
En, N[||Nt ||

2
−4]

[ sup
n

E[ sup
0 [ t [ T

||gn, N
t ||2

−4] < .

which proves Proposition 6.1.
The next step is to show that for any limit point PN of (Pn, N), the

process (Hg, f
t )t \ 0 is a martingale. The idea is to use some martingales for

Pn, N and propagate the martingale property along a subsequence converg-
ing weakly toward PN. However, the process (Hg, f

t )t \ 0 is not a martingale
for Pn, N. It is then necessary to compare it with a martingale for Pn, N and
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show that the difference goes to zero at infinity. Let f ¥ H4(R6) and
g ¥ C3

b(R). Since (gn, N
t )t \ 0 is Markovian, the following expression,

g(Ogn, N
t , fP) − F

t

0
Cn, N

s (g, f; gn, N
s ) ds

is a martingale for Pn, N, where Cn, N
t is defined by Eq. (13). We set

CN
s (g, f; gn, N

s )={Ogn, N
s , CN

1 fP+Ogn, N
s é lN

s , L1fP} g −(Ogn, N
s , fP)

+1
2 {OlN

s , CN
2 fP+OlN

s é lN
s , L2fP]} g'(Ogn, N

s , fP)

and observe that:

Cn, N
s (g, f; gn, N

s ) − CN
s (g, f; gn, N

s )

=
1

`n
{Ogn, N

s é gn, N
s , L1fP} g −(Ogn, N

s , fP)

+
1
2

{[Omn, N
s , CN

2 fP−OlN
s , CN

2 fP]

+[Omn, N
s é mn, N

s , L2fP−OlN
s é lN

s , L2fP]} g −(Ogn, N
s , fP)+

1

12 `n
an(s)

where,

|an(s)| [ ||g'||. (Omn, N
s , |CN

3 f|P+Omn, N
s é mn, N

s , |L3f|P)

We now state the following proposition.

Proposition 6.2. Under our initial assumption, for each g ¥ C3
b(R)

and each f ¥ H4(R6),

lim
n

E[|Cn, N
s (g, f; gn, N

s ) − CN(g, f; gn, N
s )|]=0

Proof. To get started, note that the integral can be easily bounded by,

1

`n
||g −||. {E |Ogn, N

s é gn, N
s , L1fP|}

+
1
2

||g'||. {E |Omn, N
s , CN

2 fP−Ols, CN
2 fP|

+E |Omn, N
s é mn, N

s , L2fP−OlN
s é lN

s , L2fP|}+
1

12 `n
E |an(s)|
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We need to control each of these terms. Note that the second term goes to
zero as n Q+.. This is an easy consequence of Theorem 2.2.1. An analo-
gous reasoning also shows that the third term goes to zero at infinity. As to
the last term, it can be easily shown that it goes to zero as n goes to infin-
ity. It remains to prove that, E |Ogn, N

s é gn, N
s , L1fP| is finite. Recall that for

all k ¥ H4(R6) é H4(R6), we have:

|Ogn, N
s é gn, N

s , kP|

[ ||gn, N
s ||2

−4
3F

R6
3F

R6
|Da

x, v, xŒ, vŒk(x, v, xŒ, vŒ)|2 dxŒ dvŒ4 dx dv4

By Lemma B, L1f belongs to H4(R6) é H4(R6), so that

E |Ogn, N
s é gn, N

s , L1fP| [ CfE[||gn, N
s ||2

−4]

[ CfE[ sup
0 [ s [ T

||gn, N
s ||2

−4] < .

which ends the proof of Proposition 6.2. We can now prove the main result
of this section.

Theorem 6.1. Under our initial assumptions, every limit point of
(Pn, N) solves the following martingale problem: for every g ¥ C3

b(R) and
f ¥ H4(R6), the process (Hg, f

t ) is a (PN, Ft )-martingale.

Proof. Let (PnŒ, N) be a subsequence of (Pn, N) converging weakly
toward PN. We then need to show that for each bounded, continuous,
and Fs-measurable Y on D([0, T]; H−4(R6)), EN[Hg, f

t Y]=EN[Hg, f
s Y].

Write: Hg, f
t =Ln, N

t +Bn, N
t where

Ln, N
t =g(ONt, fP) − F

t

0
Cn, N

s (g; f, Ns) ds

We know that {Ln, N
t , t ¥ [0, T]} is a (Pn, N, Ft )-martingale. We can then

write:

EnŒ, N[Hg, f
t Y]=EnŒ, N[Hg, f

s Y]+EnŒ, N[(BnŒ, N
t − BnŒ, N

s ) Y]

with

|EnŒ, N[(BnŒ, N
t − BnŒ, N

s ) Y]| [ ||Y||. {EnŒ, N[|BnŒ, N
t |]+EnŒ, N[|BnŒ, N

s |]}
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which goes to zero as n goes to zero because of Proposition 6.2. It suffices
to prove that

lim
nŒ Q .

EnŒ, N[Hg, f
t Y]=EN[Hg, f

t Y], -t ¥ [0, T] (30)

This can be easily obtained with the help of Proposition 6.1 and 6.2, the
PN-almost sure continuity of the mapping w Q ONs(w), fP, and the con-
tinuous application theorem.

7. CONVERGENCE OF FLUCTUATION PROCESSES

In this section, we formulate and prove the convergence of fluctuation
processes. To this end, we introduce a lemma which is concerned with
functional tt, t ¥ [0, T] defined by,

tt(f)=ONt − N0, fP− F
t

0
As(Ns, f) ds (31)

where N. ¥ C([0, T]; H−4(R6)).

Lemma 7.1. Assume that our initial assumptions are satisfied and
let PN be a limit point of (Pn, N). For each f ¥ H4(R6)), we have:

EN[e itt(f) | Ft ]=exp 3 itt(f) −
1
2

F
t

s
QN

r (f) dr4 (32)

where EN[. | Ft ] is the conditional expectation corresponding to PN.

Proof. The proof of this lemma is omitted. It follows along the same
line as the one in Uchiyama, see, e.g., ref. 3, or Stroock–Varadhan, see,
e.g., ref. 10.

Theorem 7.1. Assume that our initial assumptions are satisfied
and that Ogn, N

0 , fP converges in distribution for all f ¥ H4(R6). Then the
sequence (Pn, N) converges weakly to a probability measure concentrated
on C([0, T]; H−4(R6)).

Proof. Let W=C([0, T]; H−4(R6)) and P (1) and P (2) be two limit
points of (Pn, N) defined on W. We define,

Fg
t =s{ts(f): 0 [ s [ t, f ¥ H4(R6)} Fg=s{Fg

t : t ¥ [0, T]}
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Notice that P (1) and P (2) coincide on F0. Since the relation Eq. (32) deter-
mines P (j) on Fg when conditioned on F0, the coincidence of P (1) and P (2)

on F0 implies that on Fg KF0=s(Fg, F0), P (1) | Fg KF0=P (2) | Fg KF0.
Denote this common distribution on (W, Fg KF0) by Pg. Since W with the
topology of uniform convergence on [0, T] is Lusin and F restricted on it
coincides with its topological Borel field, there exists a regular conditional
probability measure Q (i)

N.
(.) of P (i)(i=1, 2) given Fg KF0. Now we let

W̄=W × W and F̃=F é F and define a probability measure P̃ on (W̃, F̃)
via the relation P̃(A × B)=> Q (1)

N.
(A) Q (2)

N.
(B) Pg(dN.), for A, B ¥ F. Clearly

marginals of P̃ agree with P (1) and P (2), ie if F is an F-measurable bounded
function then, > F(N(j)

. ) dP̃=E (j)F, (j=1, 2). This implies, |E(1)F − E (2)F| [

> |F(N(1)
. ) − F(N (2)

. )| dP̃. Therefore it suffices to prove P̃{N (1)
. =N(2)

. }=1
or equivalently,

Ẽ[|ON (1)
. , fP−ON (2)

. , fP|]=0 (33)

for all t ¥ [0, T] and f ¥ H4(R6). By definition of P̃, we have

P̃{ON (1)
t − N (2)

t , fP}=F
t

0
{[AN

s N (1)
s (f) −AN

s N (2)
s (f)] ds}=1

which implies that,

Ẽ[|ON (1)
. , fP−ON (2)

. , fP|]

[ F
t

0
Ẽ[|ON (1)

s − N (2)
s , CN

1 fP+O(N (1)
s − N (2)

s ) é lN
s , L1fP|]

=F
t

0
Ẽ[|ON (1)

S − N (2)
S , CN

1 f+L(lN
s ) fP|] ds

Since CN
1 f and L(lN

s ) f are both in H4(R6), their sum denoted by LN
s f

belongs to H4(R6) so that we can iterate to obtain:

Ẽ[|ON (1)
t , fP−ON (2)

t , fP|]

[ F
t

0
dt1 F

t1

0
dt2 · · · F

tm − 1

0
Ẽ[|ON (1)

tm
− N (2)

tm
, LN

tm
· · · LN

t1
(f)P|] dtm

The norm of the operator Lt is bounded by C for all t; Proposition 6.1
implies that,

Ẽ[|ON (1)
tm

− N (2)
tm

, LN
tm

· · · LN
t1

(f)P|] [ 2CmCT ||f||4

which concludes, Ẽ[|ON (1)
t − N (2)

t , fP|]=0, proving Eq. (33). Thus,
Theorem 7.1 has been proved.
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